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Abstract

~ The ProcessEngine is a process state server providing storage for process states
plus operations for defining and manipulating the structure of those states. It
separates the state of a software process from any program for constructing that
state. Instead, client programs implement the processes for operating on the process
state. This approach has a number of potential benefits such as support for process
formalism interoperability, support for multiple process languages, and low-cost
retro-fitting of process into existing environments. The process server interface
provides descriptive mechanisms for representing process state as well as product
structure. A classification of client programs is provided to show how the state
server can be used in a variety of ways.
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1 Introduction

Much of the research into process programming [14] has been concerned with the for-
malisms needed to model and support processes. These formalisms are typically made
explicit through process programming languages (PPL’s) [12], whose purpose is to support
the definition of specific processes. These formalisms, and hence the associated PPL’s
may be divided into two classes: modeling and execution (or enaction). As a rule, mod-
elling formalisms emphasize concise descriptions of the normal operation of a process.
Models intentionally ignore many details of a process in order to achieve a concise and
clear description of process. This is consistent with the idea that process formalisms for
modeling are used primarily for explanation, education, and analysis.

Process formalisms for execution are designed to drive so-called process—centered (or
process—driven) environments. A process—centered environment is one in which the pro-
grammer is guided in the task of producing software according to some methodology.
Such an environment extends the more traditional tool-oriented environment by adding
the capability to specify the process by which software is to be constructed. This is in
contrast to a typical tool based environment in which the programmer is presented only
with a collection of tools and is given no help in deciding how to apply those tools to
produce a software product.

To date, most of the work in process programming has been concerned with the
definition of appropriate process languages [12] and with the construction of example
process programs [13, 16] to test out the utility of those languages. What has been
missing from this work is a consideration of how, concretely, such languages can be used
to drive an environment. There is agreement that the environment must have some form
of process “component”, but the exact nature and role of that component has not been
decided. Additionally, there is some dispute [6] about the correct style of programming to
be used in executable process programs; roughly, the debate may be characterized as rule-
based versus procedural. Each style has its merits and demerits, yet no one has proposed a
satisfactory method by which multiple styles and multiple process languages can usefully
co-exist in an environment. Other issues such as incremental process evolution also have
yet to be completely addressed.

This paper explores the use of a process state server approach as a concrete mechanism
for solving (and in some cases bypassing) many of these problems. The ProcessEngine' is
the name of the prototype state server under construction at the University of Colorado.
It provides storage for process states plus operations for defining and manipulating the
structure of those states. A state server allows for the separation of the state of a software
process from any program for constructing that state. Instead, separate client programs
implement the processes for operating on the process state. Rather than focusing on the

'With apologies to Gibson and Sterling [4].



process program (written using some specific process language), the state server stores
the state of a process in execution. It says as little as possible about how a process state
is constructed and instead focuses on the structure of the process state and the legal
modifications that can be applied to that state.

In effect, the ProcessEngine shifts attention from formalisms for describing process
code to formalisms for describing process states. This separation allows for a degree of in-
teroperability between different code formalisms (i.e, mixing different process languages)
as long as they adhere to a common state structure.

While the state server approach is influenced by a number of previous efforts, a
primary source comes from observations on the ISPW6 Software Process Example and its
solutions [13]. That example required the solutions to be able to dynamically create and
abort various engineering tasks as part of the process. A common approach used in the
solutions was to define and manage a “reified” (explicit) representation of the engineering
tasks as part of the process program. In the APPL/A [17] solution, for example, each
task in the problem was represented by a corresponding Ada task in the program, thus
providing a direct representation of the process elements in code. Additionally, the
program included several APPL/A relations that stored information about the attributes
and structure of these tasks. In effect, the APPL/A program contained two distinct
representations of the process.

e The APPL/A tasks provided the directly executable code for the process.

e The APPL/A relations provided an explicitly manipulable representation of those
tasks.

Consistency between those two representations was maintained by embedding mainte-
nance operations in the APPL/A tasks and by using triggers to propagate information
between relations and between relations and the APPL/A tasks. A number of other
languages such as AP5 [2] and Marvel [10], produced similar solutions to the ISPW6
problem.

The state server idea elaborates on this use of an explicit process state. The novel
feature is in recognizing that this explicit state can be usefully described and maintained
independently of the languages which manipulate it.

This paper is organized as follows. First, there is a discussion of the merits of the
state server approach. Second, the architecture of the ProcessEngine is sketched. Third,
the state and product formalisms used in the ProcessEngine are described. Fourth,
the possible client-server interactions are discussed. Fifth, some miscellaneous features
(meta-data and transactions) are discussed. Finally, some related work and project status
is presented.



2 Merits of the State Server Approach

Separating policy from mechanism is the primary benefit in applying a state server ap-
proach. In this case the policy is the process programming language and all of the
“baggage” that comes along with it. This baggage includes a bias toward some form of
programming style (e.g., rule-based versus procedural). It includes the burden of complex
features such as reflection, reification, and exception handling. The state server pushes
all of that complexity out to other components of the system. This is not to say that the
state server has no biases; it will be clear (see section 4) that the choice of state model
and product model introduces bias. But it still seems less restrictive than a complete
process language.

The style problem (rule-based versus procedural) [6] represents another kind of policy.
The procedural style is good for describing the normal execution path for processes.
Unfortunately, it is not psychologically plausible since it does not allow for programmer
flexibility or unanticipated actions. The rule-based style, by contrast, is quite flexible
and can handle unanticipated actions. But it is difficult to understand the process flow.
The REBUS program [16], for example, uses this style and is not as easy to understand
as one could wish.

Style choices are policy? in that they say something specific about how to construct
a process state. The state server side-steps the whole problem by only providing a
mechanism for constructing states and saying nothing about how it must be done. Section
8 expands on this issue.

The state server can provide a migration path for retro-fitting existing environments
with process support. One can introduce a state server into an environment along with
a minimal set of tools to define state models, browse states, and modify states mostly
manually. Even this minimal set of tools can be useful in allowing programmers and
managers to record their activities and then experiment with process elements.

Once a state server has been introduced into an environment, it is possible to begin
the automation process by “wrapping” tools so that they begin to automatically record
their activities in the state server. There is a strong analog to such systems as the HP
encapsulator [8] which incrementally add control integration to environments by wrapping
tools to signal and receive events. Here, instead of wrapping for events, one is wrapping
for process.

Returning to the process language issue, the state server has the advantage that no
special language is required to write process control. Any language that can be made to
access the server can be used to define some piece of process code. Programmers and
managers can use a variety of languages to write process. This can significantly lower
the barriers to experimentation with process in an environment.

2 Assuming that the process language can support both a rule-based style and a procedural style.
8 guag
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Once the state has been separated out, it should be easier to view it. Little has
been written about the mechanisms for providing visualizations of the state of a process
when that state is inextricably tied to some process language. Is it expected that the
visualization system will be written in the process language? Or will it need special
interfaces written specifically for visualization? Or will the visualization have to be part
of the run-time system for that language? Any of these choices will complicate either
the process language or the run-time system, or both. Using a state server, writing
many kinds of visualization tools is straightforward. The tool is written in whatever
language is appropriate using calls into the server to obtain the state data needed for the
visualization. '

It has been hypothesized that process languages need mechanisms for managing on-
the-fly changes to the process. This is viewed (correctly) as a difficult task because it is
assumed that this requires the language to be reflective; that is, the language should be
able to materialize, examine, and modify its own state. Separating state from the lan-
guage avoids the need for reflection in the process language. The state will have already
been materialized (in the server) and so it can be manipulated by normal programs.
This is not to say that changes to process will be easy. There are still many problems in
determining the consequences of an on-the-fly change.

Handling unanticipated actions (sometimes termed “process exceptions”) should also
be easier. An unanticipated action is a situation in which some exceptional condition
occurs that requires a modification in the normal process flow, but does not require a
permanent change to the way the process is to be done in the future. For example,
it might be the case that the normal process requires that a design must be approved
by some manager before it is accepted. In any given “execution” of this process, there
may be circumstances (illness, deadlines, or whatever) that dictate that some designs are
accepted without review. A state server can handle such exceptions by modifying the
state to reflect the exception and possibly marking some tasks as completed even though
the normal process has not been followed.

3 Process State Server Architecture

The state server architecture is currently being implemented as a straightforward client-
server architecture. Client processes (in the operating system sense) communicate with
a server process using remote-procedure calls (RPC). The server is actually composed of
a number of modules:

Server Interface: The server interface handles the details of receiving requests from
clients, invoking the appropriate local procedure to field the request, and returning
any result back to the client.



Catalog: As described in section 6, this module maintains a queryable meta-database
of information about the structure of the process state (process goal types and
product types).

Event Dispatcher: The event dispatcher provides functionality similar to the broadcast
message server of Field [15]. It maintains a database of clients registered to receive
events along with the event patterns defining the events of interest to each client.

Process States: These are the actual state graphs and product objects and tuples. Its
general structure must be in conformance with the schema elements defined in the
catalog.

Persistent Storage: It is desirable for the state of the server to be persistent for very
long periods of time (including over machine failures). This module provides for
persistent storage of states. In practice, it is often also responsible for providing
concurrency control (see section 7).

4 A Formalism for Describing Process State

A state server such as the ProcessEngine, via its external interface, implicitly defines a
formalism for defining and manipulating process states. This formalism is defined by the
interface calls to the server and the associated constraints on the legal order in which
those calls may be invoked.

This formalism consists of two parts. As one part, there must be some representa-
tion of the tasks (or goals or procedures) that have been completed or that should be
completed. As part of this task representation, there should also be some equivalent of
variables to define the flow of data between various tasks.

As the other part of the formalism, there must be some representation of the product
(broadly construed) that is being produced by the process. The product can be expected
to include more than just the final code. It will consist of a constellation of data objects
(e.g., requirements, design, configurations) that are produced during the execution of the
process.

In the following subsections, these various elements of the formalism are discussed in
more detail.

4.1 Task Representation

In the ProcessEngine, a process state is represented as a directed acyclic graph (DAG)
of task nodes, which are instances of some collection of task types. Within a graph, the
node instances are connected by two kinds of edges. One edge type in this graph has the
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semantics of “has-subtask”, or inversely “is-subtask-of.” The other class of edge in the
ProcessEngine formalism has the semantics of “precedes.”

Figure 1(b) shows a simple task graph that will be used as a short example in this
discussion. It is in fact a simple Makefile [3], and corresponds to a particular process
for constructing an object “x” from objects “y.0” and “z.0.” For simplicity, the task
types are not indicated. Figure 1(a) shows the corresponding Makefile. This example is
admittedly simplistic, but should suffice for purposes of demonstration.

The vertical edges in the figure represent the “has-subtask” relationships. Note that
they partition the graph nodes into layers. The horizontal edges in the figure represent
“precedes” edges. These edges are constrained to only connect nodes in the same layer
that share a common parent in the immediately higher layer. These edges induce a partial
order over all subtasks of a task, and transitively, all descendants of those subtasks. For
example, task “ld([y.o0,z.0],x)” must be preceded by task “make-y.0” and thus must also
be preceded by task “cc(y.c,y.0).”

A portion of the server interface provides operations for constructing and manipulat-
ing task graphs. For our example, we will use the following operations:

Initiate: Initiate a new process graph and instantiating its root task.
Create Task: Create a task object (as an instance of some task type).
Precede: Adds a predence edge between two tasks.

SubTask: Adds a subtask edge between two tasks.

Using these server operations, the fragment of Figure 1(b) might have been con-
structed using the following sequence of operations:

1. Invoke Initiate to create a process to make object “x” with initial task “make-x.”

2. Invoke Create-task for tasks “make-y.0,” “make-z.0,” and “ld([y.0,z.0],x).” The ]
notation is intended to bracket lists of elements.

3. Invoke Sub-task to create sub-task edges from the task “make-x” to the sub-tasks
“make-y.0,” “make-z.0,” and “ld([y.0,z.0],x).”

4. Invoke Precedes to create precedence edges from the tasks “make-y.0o” and “make-
7.0” to the task “ld([y.0,z.0],x).”

5. Invoke Create-task and Sub-task again to create the task “cc(y.c,y.0)” as a sub-task
of the task “make-y.0.”

6. Invoke Create-task and Sub-task again to create the task “cc(z.c,z.0)” as a sub-task
of the task “make-z.0.”



make-x

X: ¥.0 2.0,
ld x y.0 z.0 -lc v

y.0: y.c
make-z.0 :
cc -c y.c 1d([y.0,2.0],x)
make-y.o
7.0: 7.C
cc -c z.c
ce(y.c,y.0)|  |cc(z.c,z.0)
(a). Makefile Contents. (b). State Graph.

Figure 1: Example Task Tree.

As a task is created, it is reasonable to assume that some external activity must
be initiated as a consequence of establishing the task. When (and if) this activity is
completed, it is desirable to somehow note this fact. This notation will be termed “task
satisfaction.” In its most primitive form, task satisfaction is marked by invoking the
Satisfied operation in the server interface to declare that a task is considered satisfied.
Note that this operation says nothing about the semantics of task satisfaction, only that
some external client deemed the task to have been satisfied. In some cases, this marking
may be carried out automatically. It is possible to attach (via an event) a toolto a task
and to specify that satisfaction of that task can be obtained by successfully executing
the attached tool.

Returning to our example graph, the following sequence might be used to satisfy all
the tasks in the graph.

1. Satisfy task “cc(y.c,y.0)” by executing the C compiler as an attached tool.
2. Satisfy task “make-y.0”
3. Satisfy task “cc(z.c,z.0)” by executing the C compiler as an attached tool.
4. Satisfy task “make-z.0”

5. Satisfy task “ld([y.0,z.0],x)” by executing the loader an attached tool.
7



6. Satisfy task “make-x”"

Note that this sequence is not unique. Other orders of satisfaction could have been applied
to achieve the same effect. Additionally, the impression may be left that task expansion
must also precede all task satisfaction. This is not the case; the two processes may be
intermixed subject to the constraints implied by the edges in the graph as embodied in
two obvious rules.

1. No task may be marked as satisfied until all of its subtasks are marked as satisfied.

2. No task may be marked as satisfied until all of its preceding tasks are marked as
satisfied. '

4.2 Task Parameters

In addition to simple task objects, the task representation includes task parameters, which
are a simple form of variable.

Task parameters server two purposes. First, the parameters serve to define the flow of
data between task nodes. Second, many processes can be more concisely specified if task
types can be parameterized and reused with different parameters at various points in the
process. In the Makefile example, it is inconvenient to have a different task “cc(X.c,X.0)”
for every possible X. Rather, it is preferable to have a parameterized task type of the
form “cc(C,0)” which is satisfied when C is bound to a source file and O is bound to the
corresponding object file.

Each task type has an associated set of task parameters divided into input parameters
or output parameters. In line with this, task parameters are marked as either in (input)
or out (output) arguments®. When a task instance is created, a set of actual arguments
(instances of the parameters) is created and associated with the task instance. Initially,
~all of these arguments are unbound in value. A simple form of unification, as in logic
languages, is the model for assigning values to arguments in this state model. Operations
are available to bind arguments with either product values (see section 4.3) or with other
task arguments. In effect, this last case binds two variables together so that if one
becomes bound to a value, then the other is bound to the same value.

Data flow between tasks can be represented by defining a variable as the output of
one task and the input of a succeeding task. The semantics of variable binding ensure
that when the variable is bound to a value by the first task then that same value will
appear as an input to the later task.

Since one rarely would want a tool to be invoked until all the inputs to a task are
bound, a distinction is made between the actual creation of a task, and when its last

3The equivalent of in-out is deliberately not provided.
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input argument is bound to a real value. This latter situation is termed task ready.
When a task is marked as satisfied, that too is an event of interest. But because there
is more control over when this occurs, the binding state of output arguments is handled
differently for task satisfaction. A task can be marked as satisfied even if some of its
output arguments are not bound to real values. The choice to leave arguments unbound
is deliberately left to the client that marks a task as satisfied.

4.3 Product Representation

In general, processes are intricately interwined with the structure of the products to be
produced. In light of this, it is reasonable to include some form of product type model
as part of the server.

Debates about appropriate type models are endless (and probably fruitless). The
ProcessEngine uses a form of entity-relationship model. This model for product structure
is based on the notion of object identity plus a relation model. Experiences with the
APPL/A process language, and examination of other potential process languages such
as AP5 indicate that this is a plausible choice, but other choices are certainly defensible.

This type model consists of the following elements:

Scalar Types: A selected set of primitive scalar types are part of the model. These
types currently are integer, string, and atom.

Abstract Object Domains: It is possible to define abstract domains of objects (e.g.,
text-file). These domains consist of only object identifiers: i.e., values unique for
every object across all domains. It is possible to define subtype domains (e.g.
source-code isa text-file). Union types can be defined also. A distinguished type
named object is defined as the parent of all other domain types. It is important to
note that objects (as identifiers) do not necessarily have any state associated with
them.

Relation: One can define n-ary relations with named attributes (fields) over either ob-
ject domain types or scalar types. Relations are bags of tuples and not sets (a
deliberate choice). Relations are the state-carrying elements in this model. If
an abstract object needs state, then relations must be defined with one attribute
coming from the domain of that abstract object and one or more other attributes
defining the associated state. Relations also inherit down subtypes. This means
that if relation R is defined over Typel x Type2 and Type3 isa Typel, then R
may contain fields whose first value is an instance of Type3.

Given a product schema defined using the above elements, the server interface provides
operations for defining that schema to the process server using operations for creating
objects and relations and tuples.



‘As a special help, a client can define a domain type and define specific byte strings as
elements in that domain. This allows the clients to use externally generated handles in
the product structure. Note that ambiguity is possible here if two semantically different
external handles have the same byte string encoding.

Finally, it is assumed that the product type model can also be used to represent the
task representation graphs, including task types and task parameters. This provides a
capability for clients to attach client-defined annotations (such as “task-stopped”) to, for
example, task nodes in a state graph. In fact this is the underlying mechanism used to
implement operations such as Satisfied.

5 Event Management

Event dispatching systems such as Field [15] and HP-SoftBench [8] have proven to be
remarkably useful for integrating the control of tools in an environment. One tool can
signal an event such as editing a source code file. Another tool, Make for example, can
register with the dispatcher to receive such events and cause the source code file to be
automatically re-compiled.

Changes in the state of the process state server also represent events of which clients
should be notified. For example, an event can provide one means for connecting a task
and a tool. When a specific task is added to the process state, this can be defined to
signal an event with a specific structure. This event can be fielded by the tool responsible
for satisfying tasks of that type.

To facilitate client notification, the state.server provides an event definition, regis-
tration, and notification facility as part of its interface®®. Essentially all changes to the
process and product state can generate an event notice. But the changes of primary
interest are task creation, task satisfaction, task ready (i.e., last input bound), object
creation, and tuple creation and deletion.

For compatibility with other event systems, events generated by the state server are
strings which encode information about actions. For example, when a task is instantiated,
an event is generated with a string encoding such things as the state server, the task object
and the operation. This event might be fielded by a tool designed to satisfy tasks of this
type (though in practice, most tools will wait for a task ready event to guarantee that all
the inputs are bound to values).

Events are generated in two ways. First, process state and product state changes
generate events. Second, the dispatcher interface is exposed to clients, so they may

‘Event signalling takes the state server out of a role of passive component and makes it an active
component.

5Note that if the environment already has an event server, then the state server can use it instead of
its internal one.
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generate arbitrary events as well. Clients must register with the dispatcher in order to
receive signalled events. Note that there is no need to have the dispatcher accept events
from outside. The equivalent effect can be had by defining a client to capture those
external events and perform whatever state actions are required.

6 State Model Catalog

The basic structure of a state model is simple: task nodes connected by edges. But
for the server to function it must have more detail about the model being supported.
In effect, the server needs a specification of the allowable task types, along with their
input/output structure, and the types and relations of the product model. In most
systems, there would be a defined language for these specifications and a “program” in
that language (a specification) would be input at either the time of server construction
or at the time of server invocation. ‘

But it seems desirable to allow more flexibility with the specification and so we take
a meta-data catalog approach as opposed to a language approach®. In effect, the catalog
stores a data structure (the meta-data) that contains the same information as would be
defined using the specification language. The primary advantage of a catalog structure
vis-a-via a language is that it allows for browse and update of the schema elements. It is
possible to query the catalog to see what tasks, types, relations, and events are defined
and to dynamically modify those elements of the model. This is useful in defining new
tasks representing the availability of a new tool, for example. Dynamic addition of event
receivers is also important.

It is assumed that the elements in the catalog have names and so the catalog im-
plicitly defines a name space consisting of those elements. The initial implementation
assumes a flat name space’ for top level objects of tasks, types, relations, and explicitly
defined events. This means that each such top level element must have a name that
is unique. Secondary elements such as task inputs and outputs have names, but they
are conceptually “contained” within other elements (tasks types in this case). Those
secondary names need only be unique within their containing element. Of course, this
means that technically, the name space is not flat, but it is still less structured than, for
example, the Unix file system.

Part of the server interface is devoted to operations for manipulating and accessing the
catalog structure. This interface makes significant use of handles, which are references
to objects in the server. The client can only get handles from the server, copy them

5The two should not be considered mutually exclusive. There is no reason why the catalog cannot
be initialized by means of some specification written in some language.

7A flat space is acceptable for an experimental prototype but a more sophisticated and structured
name space will be needed beyond that.
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around, and send them as arguments back to the server. The client has no knowledge of
the internal structure (if any) of the handles.

The catalog interface consists of a number of operations for each kind of element.
One operation is to lookup an element by name and return a handle to it,. There also
operations to create and destroy instances of an element. Other operations are provided
to browse the catalog by enumerating the elements in it. By appropriately invoking these
operations, a client can specify an arbitrary collection of elements.

7 Transactions

It is to be expected that the state server will be accessed simultaneously by multiple
clients. Additionally, it is also desirable to support atomicity for clients so that a client
failure will not compromise the integrity of the server. This combination implies a need
for some form of general database transaction mechanism.

As an initial solution, it is assumed that the server interface provides the following
standard interface operations for supporting transactions.

Begin Transaction: Initiate a transaction between a client and the server.

End Transaction: Terminate (successfully) a transaction between a client and the
server and commit any modifications performed during the transaction.

Abort Transaction: Terminate (unsuccessfully) a transaction between a client and the
server and ensure that the effects of all operations performed during the transaction
are erased.

Explicit locking operations are not required since the kind of lock (read or write) can be
deduced from the particular operation and its operands.

8 Client Paradigms

Given a state server with the architecture as described previously, one is left with the
question: how does one actually use it? This reduces to the problem of constructing
clients to define a process state and to manipulate it through the server interface. As has
been indicated, the state server approach deliberately emphasizes mechanism and leaves
policy for the clients. Decisions such as task expansion, task satisfaction, and constraint
maintenance are pushed out of the server and into the clients.

Proper construction of clients is, frankly, still the subject of experimentation. Be-
cause they may be arbitrary programs, it is difficult to crisply characterize all possi-
ble clients. Nevertheless, it is possible to discern three rough classes of clients: tools,

12



process-constructors, and process-constrainers. Tools are what you might expect; they
are monolithic independent programs for performing some action. Typically a tool is
associated with a leaf task in the process state. When the task is instantiated, the tool is
invoked. When the tool completes successfully, the task is marked as satisfied. Tools may
be interactive, which means that from the point of view of the process, the associated
task is non-deterministic.

There is a wide variety of clients which may be characterized as process-constructors.
This variety directly reflects the range of possible styles for constructing processes.
Broadly, it is possible to distinguish three sub-classes of constructors:

1. Procedural constructors operate “top-down.” These clients looks for a task of a

given structure and expands it by adding a fixed set of subtasks. This is more-or-
less “backward-chaining” or “procedure-call.”

2. Rule-based constructors operate “bottom-up.” These clients looks for a collection

of tasks, creates a new task, and converts the collection of tasks into subtasks of
the new task. This may be viewed as a form of forward chaining. Sometimes, the
supertask may already exist in the process state, and this kind of client can act to
merge previously independent process fragments.

3. Planning constructors are actually a generalization of procedural constructor. A
good example of a process formalism using planning can be found in [9]. A planning
system would look at the task to be expanded, and at a range of tasks actions and
try to create a specific set of subtasks to satisfy the parent task. A procedural
constructor can be seen as a rather simplistic planner in that it uses the same
plan (sequence of subtasks) for every parent task. A true planner might produce
different subtasks depending on additional information such as the input values
associated with the parent or knowledge about the product state.

It is intriguing to note that all three types of constructor clients might simultaneously be
acting on a single state server. This provides one approach to interoperability between
various process program styles and formalisms.

The third identifiable class of client is the process constrainer. This is a client that is
responsible for checking and enforcing any constraints on the legal structure of the process
and product state. Constraint in this context should not be thought of as a predicate (as
in APPL/A or AP5), but rather as an arbitrary piece of code which examines the state
of the process server and decides if it is correct or not. The code of the client might have
been generated automatically from such a predicate, but it could be constructed in some
other fashion as well.

In a typical situation, a constructor client might add tasks to the state. These tasks
would generate events that would cause the activation of some set of constrainers. The
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constrainers would examine the state and if any constraint were violated, then the con-
strainer would initiate some form of repair. Repair might entail modification of the
state, or even rollback by detaching the new tasks from the task graph and possibly even
destroying tasks.

It is worth repeating that this classification of clients is purely ad-hoc. It reflects the
typical styles enforced by the various formalisms defined in the process literature. But
the process state server does not force any client to fit into any of these categories. If a
client chooses to mix styles, or use some other style altogether, or be simultaneously a
constructor, tool and constrainer, then that is perfectly acceptable (though perhaps not
desirable).

In fairness, it should be noted that this extreme flexibility in clients has an important
drawback; it may be difficult to comprehend the process program that is generating some
particular state in the state server because the “program” is spread out over a number of
client programs possibly written in a variety of programming languages. This may imply
the need for some separate specification of the process that can be understood, and from
which the various clients can be derived (manually or automatically). But this is a topic
for future consideration.

9 Related Work

As previously mentioned, the primary motivation for a process state server came from
an examination of the solutions for the ISPW-6 Software Process Example. It was clear
from those solutions that process state was important separate from any formalism for
constructing it.

The style problem [6] was also a factor. the problem there was to somehow reconcile
the need for both prescriptive and proscriptive process languages. The key insight was
to recognize that both styles could share a common state, even if they were constructed
in different ways (by rules or procedurally).

But others are certainly recognizing the importance of process state. For example, a
number of the papers in [18] relate to the issue:

e The Process Virtual Machine (PVM) of Balzer is substantially more ambitious than
a process state server. But, it does assume that part of the PVM will be a grammar
for a process state. If that grammar happens to match the state structure used by
a process state server, then that server probably could be used as a component of

that PVM.

e Kaiser is proposing a rule-based process server based on Marvel [11]. Unlike the
state server, this server contains a complete process programming language (Mar-
vel). This style of server seems to have more policy in that it uses the Marvel
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rule-based language to manipulate any state in the server. Many of the tasks of
the Rule-Based server seem similar to those of the Process Virtual Machine. As an
aside, one may hypothesize that if the underlying state of a Marvel system were
made explicit, then it would look very much like a process state server as defined
in this paper.

e The Articulation system of Mi and Scacchi appears to be moving to separate how a
process is constructed from what is constructed. Its development instance concept
could be viewed as an approximation of process state.

e Penedo addresses the issue of separating modelling from implementation. As with
the PVM, implementation includes a state component and so there is a place to
insert the process state server technology.

The ECMA/NIST Reference Model [5] explicitly includes a notion of Process State
Services. Again, the notion of state in that model is more general than that of the process
state server defined in this paper, but it is clear that the capabilities of the ProcessEngine
overlap with the functionality of the ECMA-NIST Process State Service.

The key difference between the ProcessEngine and these other proposals is that the
process state server is intentionally “minimal.” To reiterate, it emphasizes mechanism
over policy. Other proposals include a specific language or language style as part of the
server. Additionally, constraints on the form of the process state are included as part of
the server. The process state server defined here pushes such constraints out of the server
and requires clients to enforce them. One consequence is that the ProcessEngine has the
potential to address process-formalism interoperability, which is has not been addressed
by these other systems.

It may be possible to reconcile all of the proposals by defining additional servers to
act as clients to the ProcessEngine. A client could implement, for example, the rule part
of the Rule-Based Server and leave the state definition to the ProcessEngine. This would
have the advantage that other language servers could share the same state server and
provide a certain degree of interoperability.

10 Status

A version of the ProcessEngine is currently under construction. This initial version is
actually being implemented using modules from the existing Triton system [7]. Triton
may be briefly characterized as a serverized object repository providing persistent storage
for typed objects, plus functions for manipulating those objects. Triton uses an existing
object manager, Exodus [1], to provide much of its functionality.

The process state server has many similarities to an object manager and so it should
not be surprising that much of Triton can be used for the ProcessEngine. Triton has
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modules for persistent storage (Exodus), for server interface management, for a catalog,
and for a form of event management: all of which can be used in the ProcessEngine.

11 Conclusion

The state server approach introduces a powerful separation of mechanism from policy
into process programming by separating the state of a process from the languages that
might be used to construct that state. This has a number of benefits such as support
for multiple languages and styles, simplification of process languages, support for retro-
fitting, and visualization. This indicates that this approach has significant value as an
approach to process programming.
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